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ABSTRACT 
In this paper, nonlinear vibration of a triangular shape plate, 
with several stiffeners, is studied. The governing equation of 
transversal deflection of the plate, with considering the effects 
of orthotropic characteristics and external excitation, is 
analyzed. The ordinary differential equation for the time 
response of the system, through employing the Galerkin 
method, is obtained; and the frequency response of the plate-
shape structure - using the multiple scale method - is 
determined. A robust genetic-based multi-objective 
optimization technique is employed to optimize the system’s 
response by finding the optimum values of the geometry and 
locations of the plate’s stiffeners. The influence of various 
parameters on the optimization results is investigated. 
According to the results, the optimum design of the stiffeners 
leads to a better performance of the vibration response. 

 
INTRODUCTION 
Due to comprehensive applications of triangular-shape plates in 
various industries such as ship structures, ceilings, aircrafts 
bodies, vehicles, and so on; investigation of their mechanical 
behavior and optimal design of them are crucial for the 
researchers and manufacturers.  Surveying the literature reveals 
that, one of the main aspects of their behavior is the vibrational 
response of such structures, with and without external 
excitations. Consequently, a number of research works have 
been dedicated for the vibration analyses; which are mostly 
based on numerical methods [1]. As examples, the natural 
frequencies and mode shapes of triangular-shape plates with 
free vibration were accomplished by Leissa and Jabber using 
the Ritz method [2]. Considering various boundary conditions, 
the free vibration of thin triangular plates was investigated by 
means of Rayleigh-Ritz method [3]. Hocine et al. applied the 
hp- finite element for vibration analysis of the orthotropic 
triangular and rectangular-shape plates [4]. Nallima et al. 

studied a triangular composite plate where its edges elastically 
restrained [5]. In majority of studies, the linearization theories 
with considering small amplitudes of vibration have been taken 
into account.  

Optimal design of stiffeners for the plate form structures 
and investigating the effects of stiffeners on the response of 
corresponding structures are valuable contributions toward 
improving their mechanical behavior in variant applications. As 
previous works, large oscillation analysis of an anisotropic 
triangular plate including stiffeners was conducted by Nowliski 
and Ismail [6]; Shastry and Rao investigated the vibrations of 
thin rectangular plates having arbitrary oriented stiffeners [7]; 
Wu and Liu] analyzed the vibration of stiffened plates with 
elastically restrained edges [8]. The vibration characteristics of 
anisotropic plates -with eccentric stiffeners- and eigenvalue 
sensitivity analysis of stiffened plates -with respect to the 
stiffener locations- were investigated in [9-10].  

Marcelin used genetic algorithm-based optimization for 
optimal design of stiffened plates [11]; he utilized shells and 
stiffened plates with an FE mesh support. Philen and Wang 
utilized active stiffeners for vibration control of a circular plate 
[12].  Adeli et al. optimized types of composite plates including 
piezoelectric stiffener-actuators [13] and the effects of 
considering single mode approach were studied [14]. Elsabbagh 
accomplished the size optimization of stiffeners for a bending 
plate using a finite element based method [15].   

The current work investigates the nonlinear vibration of 
orthotropic triangular plates. Double-rib shape stiffeners are 
considered for the plate and also it is subjected to external 
harmonic excitation. The Galerkin method is applied to 
governing coupled partial differential equations of the plate 
deflection and stress. Accordingly, a nonlinear ordinary 
differential equation for the deflection time response is 
obtained. There exist various perturbative and non-perturbative 
methods for analyzing of the obtained equation [16-17].  
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A multiple-scale method is utilized to analyze nonlinear 
systems and to obtain the frequency response for the plate 
vibration. The resulted multi-objective optimization problem 
for the frequency response is solved and the optimum sizes and 
positions for the stiffeners are obtained. Genetic Algorithm is 
chosen here as a well-established optimizer to solve our multi-
objective problem [18]. This method, which is an evolutionary 
one, is applicable for solving many complicated problems in 
mechanical design applications [19]. Finally, simulation results 
are presented for various numerical dimensions of plate and 
stiffeners; also, the optimum frequency responses are computed 
and compared for various scenarios.                   

MATHEMATICAL MODELING 

An elastic right-angle triangular-shape plate having lengths 
of A and B in the respective -x and -y directions and a uniform 
thickness of h, shown in Figure 1, is considered. The Von-
Karman governing equations of motion are developed as [6]: 

0),(),,(

2),(

11

0

1

0

1

22
1









wL
D

h
tyxq

D

q
w

D

w
D

h
wkwmww

t

ttyyyyxxyyxxxx                            (1) 

0),(
2

),( 222
2  wwL

E
kpw yyyyxxyyxxxx              (2) 

In these equations, w and  indicate the deflection of the 

plate in the -z direction and the stress function, respectively.  
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Parameters 
1D  and 

2D  are the two bending rigidities in 

the -x and -y directions, and hence 
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where 
1E  and 

1  are the respective Young’s elasticity module 

and Poisson’s ratio in the -x direction. 
2E  and 

2  are those in 

the  -y direction, respectively; and 12G  is the shear modulus of 

rigidity.  Also, in Eq. (1),  and  denote density and 

damping coefficients; and, 
0q is the amplitude of external 

excitation. The deflection terms and the stress functions, as a 
separable form of displacement and time function, are written 
as 

)().,( and      )().,( tyxgtyxgw               (7) 

 
Figure 1: Schematic model of a triangular-shape plate with six 

stiffeners and excitation load q 
 
Considering the fundamental mode of vibration for the 

plate, in which, the displacement and stress are zero at each 
contour and maximum at the central portion; the trial shape 
function is assumed as follow in such a way that all the 
boundary conditions are satisfied [6]: 
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Substituting Eq. (7) into Eq. (1) and Eq. (2), the following 
integrations are constructed, based on the Galerkin method. 
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Finding )(t from the second integration and utilizing it in 

the solution of the first one, the governing equation for the time 
response of the plate deflection is obtained as 
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It should be noted that, for this study the first shape 
function is considered for the plate vibration. Because this 
function is the most important and commonly used mode shape 
in the plate vibration; and it has the lowest natural frequency 
known as the fundamental natural frequency. On the other 
hand, considering higher modes increases the number of 
objectives to more than two; which makes it very complicated 
to solve and analyze. 

PROBLEM SOLUTION 

Eq. (11) shows a form of nonlinear equation having 
hardening cubic nonlinearity and external force, which is taken 
harmonically as )cos()( ttq  . The equation has been 

solved by the multiple scales method (MMS); which is a well-
known perturbation technique [16]. Because of the page 
number restriction, we do not aim to discuss the details of the 
solution methodology here as it can be found in corresponding 
references; and we just present the obtained solution.  

Here, a critical case, in which the excitation frequency   
is close to the natural frequency , is considered and 
consequently primary resonances will happen in the system. 
Accordingly, one will set   , where is the non-
dimensional small parameter and  is the detuning parameter. 
The frequency response of the system - in terms of natural 
frequency, nonlinear coefficient, damping ratio, and amplitude 
of excitation - is obtained as [16]: 
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where a  denotes the amplitude of vibration; and   represents 
the proximity of excitation and natural frequencies. Plotting 
above response for two typical cases, one can reach the graphs 
presented in Figure 2.  

 

 
Figure 2: Frequency response of system for two typical cases 

The maximum value of amplitude is independent from the 
nonlinear parameter and obtained by 2qa peak  , and the 

nonlinear term influences on bending the curve. The red lines 
are known as backbone curves to be achieved by the following 
equation [16]  

 8/.3 2a                                                                   (15)  

APPLYING OPTIMIZATION 

- Determining of the Objectives 

To define the objective functions for optimization, let 
consider the case such that is approaching zero from right 
side. As seen in both graphs of Figure 1, a jumping 
phenomenon, where the amplitude of vibration increases 
unexpectedly, occurs in the frequency response which is 
undesirable for the system [16].  It is evident from Figure 2 that 

for identical peaka , the system with higher curvature, i.e., more 

nonlinear, has lower undesirable jump. Also, the figure reveals 
that for similar , the system with more inclination to the 
vertical line reaches both higher amplitude and larger range of 
jump. On the other hand, for such vibrational system it is 
desirable to have lower amplitude of vibration when the system 
is imposed by an external force.  

Accordingly, the aim is to avoid larger jump and higher 
amplitude for the vibration of system; which is achieved by 
defining a bi-objective problem with following two objectives: 

maximizing of m  and minimizing of peaka . The external 

force and damping are not the design parameters hence the aim 
is to design the geometry and location of stiffeners affected by 
natural frequency, nonlinear coefficient, and subsequently by 

m  and peaka . Eventually, the objective functions of our 

problem are defined as follows: 
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- Decision variables 

 
The following design parameters build our decision variables: 
thickness of the plate (h), thickness of the stiffener (t), height of 
the stiffener (t1), and average distance of two adjacent 
stiffeners (s). The last one can be defined by the number of 
stiffeners N, used at the span of a plate, where Nas / . The 
variable N is a discrete parameter unlike the others. As the aim 
is to employ an evolutionary optimization method (i.e., multi-
objective genetic algorithm) which can handle mix-type 
variable problems (continuous and discrete ones) [22]; also 
non-differentiable functions [24];  however, by defining s as a 
continuous variable and using it instead of N, there would be no 
discrete variable in the decision parameters; which simplifies 
our optimization approach. There are some box constraints on 
above decision variables based on the standards of designing 
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stiffened plate; which should be taken into account in 
optimization [20-21]. Accordingly, the following constraints are 
defined for the corresponding variables; which are applicable 
for the type and size of original plate in this work. 
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- Optimization method: Genetic Algorithm (GA) 

A multi-objective genetic algorithm is implemented for 
solving the problem in this paper. This method employs an 
iterative stochastic search strategy to find Pareto optimal 
solutions by imitating principles of biological evolution [18]. In 
GA, also other evolutionary algorithms, a population of 
individuals is used as potential candidate solutions of 
optimization problem; where any individual consists of the 
values of the designing parameters [19]. The utilized GA-based 
multi-objective optimization algorithm obtains a local Pareto 
front for multiple objective functions. This approach works on a 
population of individuals using a set of biological operators 
(i.e., selection, crossover, and mutation) which are applied on 
the population in which the initial population is generated 
randomly, generally speaking [23]. The next generation of the 
population is computed based on the non-dominated ranking 
using a distance-based measure of the current individuals in the 
population [24]. A non-dominated rank is assigned to each 
individual using the relative fitness values, for example, the 
individual 'a' dominates individual 'b' if 'a' is strictly better than 
'b' in at least one objective and 'a' is no worse than 'b' in all 
other objectives [24]. In other word, 'b' is dominated by 'a'; or 
'a' is non-inferior to 'b'. Two individuals 'a' and 'b' are 
considered to have equal ranks if neither dominates the other. 
The distance measure of an individual is used to compare 
individuals with an equal rank [24]. It is a measure of how far 
an individual is from the other individuals with the same rank. 
The algorithm uses a controlled elitist GA favors individuals 
that can help increase the diversity of the population even if 
they have a lower fitness value [22, 24]. It is very important to 
maintain the diversity of population for convergence to an 
optimal Pareto front which can be done by controlling the elite 
members of the population as the algorithm progresses [24]. A 
Pareto fraction option limits the number of individuals on the 
Pareto front (elite members) and the distance function helps to 
maintain diversity on a front by favoring individuals that are 
relatively far away from the front [24]. Further information on 
the fundamental concepts of a GA is discussed in [19]. 

RESULTS AND DISCUSSION 

In this section, the results of optimization are presented by 
considering variant values for the length of the right-angle 

plate, upper and lower bounds of the plate, thickness, and 
amplitude of excitation.  A section of the Pareto Front for 
considered two-objective functions are presented in Figure 3 
for specific numerical values. Here, three important points are 
chosen and the corresponding frequency responses are plotted 
in Figure 4. As seen, for point C the curvature of the backbone 
is the highest one so the system shows it is the most nonlinear 
behavior. However the amplitude of vibrations reaches the 
maximum value for this case. On the contrary, point A shows 
the most linear behavior having smallest amplitude. The point 
B represents a moderate behavior in terms of nonlinearity and 
amplitude of vibration which can be an appropriate option for a 
design problem. In addition, the corresponding values of 
objective functions and decision variables for abovementioned 
points have been provided in the Table 1. 

 
Table 1. Some sample Pareto solutions: Objectives and 

variables for three points A, B, C 
Points A B C 

f1  0.736  6.188  49.739 

f2  0.098  0.061  0.043 

h  0.015  0.015  0.011 

t  0.016  0.027  0.030 

t1  0.067  0.057  0.075 

s  0.228  0.191  0.182 

 
 
Figure 5 shows the variations of both objectives when the right 
angle side length, A, increases. It is obvious by decreasing the 
length has a positive effect on the optimal solutions; however, 
the diversity of results is not appropriated. The effect of 
changing excitation amplitude on objectives is presented in the 
Figure 6. 

 
Figure 3: Distribution of Pareto Front (PF) solutions  
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Figure 4: Frequency responses of three special points 

 
Figure 5: Effects of the plate length A, on PF solutions 

 
Figure 6: Effects of excitation amplitude on PF solutions 

 
Here, decrease in the excitation amplitude leads to better 

optimal results, unlike the diversity. Also, variation of upper 
and lower bounds of plate thickness has been shown in the 
Figure 7, where by increasing the bounds, the optimal solutions 
have been improved. The interactions of decision variables are 
shown in Figure 8. Their shape’s complexity is the evidence for 
the complexity of solved bi-objective problem in term of the 
variables’ interaction. 

 

Figure 7: Effects of the thickness boundaries on PF solutions 
 
  

 
Figure 8: Variables’ interaction  

 

 
Figure 9: Scattering of variables during generations’ progress.  
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  Figure 5 depicts the distribution of decision variables 
between their upper and lower bounds for a typical case.  

As seen, the variables t and t1 (i.e., stiffener thickness and 
height, respectively) tend to their upper bounds but the 
parameter s has more tendency to its lower bound. In addition, 
the distribution of the parameter h as the plate thickness is 
almost uniform with a higher tendency toward the lower bound.   

CONCLUSION 

In this paper, nonlinear force vibration of a triangular plate 
was studied. The plate includes stiffeners; and the primary 
resonance was considered in vibration behavior of the plate. 
The governing equation of motion was derived and solved by 
means of the Galerkin procedure and the method of multiple 
scales. Subsequently, the frequency response was presented in 
an analytical form. In next step, a multi-objective optimization 
was carried out considering two conflicting objective functions, 
i.e., maximizing the nonlinearity of the system and minimizing 
the amplitude of vibration.  

Four decision variables were taken into account including the 
thickness of the plate, the geometry, and the distance of the 
stiffeners. Results of optimization using a genetic algorithm 
were reported in detail. Finally, the effects of different 
parameters on the optimal solutions and also the distribution of 
decision variables were investigated to provide a 
comprehensive understanding about the system’s behavior.  

It was found any decrease on the distance between the two 
consecutive stiffeners and any increase on the width of the 
stiffeners will reduce the amplitude of vibration, as well as, the 
system’s nonlinear behavior. Thus, if it is desired for the 
system to have lower amplitude of vibration with a linear 
behaviour; it would be necessary to use the highest allowable 
number of stiffeners with the largest possible width in the span 
of the plate. Increase on the height of stiffener can also be 
useful for having this behaviour; however this parameter and 
also the thickness, h, do not always show a regular behavior for 
their influence on the response of the system. As a future work, 
one can suggest to take two mode shapes of vibration for the 
system which results two coupled ordinary differential 
equations for the time response of the system; and consequently 
the number of objective functions in the optimization problem 
increases to four functions. 

 
 
ACKNOWLEDGEMENT 
 
The financial support provided by the Natural Science and 
Engineering Research Council (NSERC) of Canada to complete 
this research is gratefully acknowledged. 
 

REFERENCES 
[1] Leissa, A.W., 1969, “Vibration of Plates,” NASA SP-160, US 
Government Printing Office, Washington DC, USA. 
[2] Leissa, A.W. and Jaber, N.A., 1992, “Vibration of Completely Free 
Triangular Plates,” Int. J Mech. Sci., 38, pp. 605-616. 

[3] Kim, C.S. and Dickinson, S.M. 1990 “The Free Flexural Vibration 
of Right Triangular Isotropic and Orthotropic Plates,” J. Sound Vib., 
141, pp. 291-311.  
[4] Hocine, M., Abbes, B.B., and Abdelhamid, H., 2007, “The h-p 
Finite Element for Free Vibration Analysis of the Orthotropic 
Triangular and Rectangular Plates,” Math. Comput. Model. Dyn. Syst., 
13, pp. 573-597. 
[5] Nallima, L.G., Luccionib, B.M., and Grossia, R.O. 2005, 
“Vibration of General Triangular Composite Plates with Elastically 
Restrained Edges,” Thin. Wall. Struct., 43, pp. 1711-1745. 
[6] Nowliski, J.L., and Ismail, I.A., 1965, “Large Oscillation of an 
Anisotropic Triangular Plate,” J. Frankl. Inst., 280, pp. 417-424. 
[7] Shastry, B.P., and Rao, G.V., 1977, “Vibrations of Thin Rectangular 
Plates with Arbitrarily Oriented Stiffeners,” Comput. Struct., 7, pp. 
627-629. 
[8] Wu, J.R., and Liu, W.H., 1988, “Vibration of Rectangular Plates 
with Edge Restraints and Intermediate Stiffeners,” J. Sound Vib., 123, 
pp. 103–113. 
[9] Lee, D.M., and Lee, I., 1995, “Vibration Analysis of Anisotropic 
Plates with Eccentric Stiffeners,” Comput. Struct., 57, pp. 99-105. 
[10] Liu, Z. S., Hansen, J. S., and Oguamanam, D. C. D., 1998, 
“Eigenvalue Sensitivity Analysis of Stiffened Plates with Respect to 
the Location of Stiffeners,” Struct. Optimization, 16, pp. 155-161.  
[11] Marcelin, J.L. 2001 “Genetic optimization of stiffened plates and 
shells,” Int. J. Numer. Method. Eng. 51, pp. 1079-88. 
[12] Philen, M.K., and Wang, K.W., 2005, “Active Stiffeners for 
Vibration Control of a Circular Plate Structure: Analytical and 
Experimental Investigations,” J. Vibration. Acoust., 127, pp. 441-450. 
[13] Adali, S., Sadek, I.S., Bruch Jr., J.C., and Sloss, J.M., 2005, 
“Optimization of Composite Plates with Piezoelectric Stiffener-
Actuators under In-plane Compressive Loads,” Compos. Struct., 71, 
pp. 293–301. 
[14] Karimin, K., and Belhaq, M., 2009, “Effect of Stiffener on 
Nonlinear Characteristic Behavior of a Rectangular Plate: A Single 
Mode Approach,” Mech. Res. Commun., 36, pp. 699–706. 
[15] Elsabbagh, A., 2013, “Size Optimization of Stiffeners in Bending 
Plates,” Mech. Adv. Matl. Struct., 20, pp. 764–773. 
[16] Nayfeh, A.H., and Mook, D.T., 1979, “Nonlinear Oscillations,” 
John Wiley & Sons, New York, USA. 
[17] Cveticanin, L., KalamiYazdi, M., Askari, H., and Saadatnia, Z., 
2012 “Vibration of a Two-Mass System with Non-integer Order 
Nonlinear Connection,” Mech. Res. Commun., 43, pp. 22-28.  
[18] Srinivas, V., and Deb, K., 1994, “Multiobjective Optimization 
Using no Dominated Sorting in Genetic Algorithms,” J. Evol. 
Comput., 2, pp. 221-248. 
[19] Goldberg D.E., 1989, “Genetic Algorithms in Search, 
Optimization and Machine Learning,” Addison-Wesley, Reading, MA, 
USA. 
[20] Ugural, A.C., “Stresses in Plates and Shells,” McGraw-Hill Inc., 
New York, USA. 
[21] Ambartsumyan S.A., 1991, “Theory of Anisotropic Plates: 
Strength, Stability, & Vibrations,” Taylor & Francis, 2nd Ed. 
[22] Kalyanmoy, D., 2001 “Multi-Objective Optimization Using 
Evolutionary Algorithms,” John Wiley & Sons, New York, USA. 
[23] “Find Minima of Multiple Functions Using Genetic Algorithm”, 
the MathWorks, Inc. 1994-2013, 
http://www.mathworks.com/help/gads/gamultiobj.html. 
[24] “Multiobjective Genetic Algorithm Options”, MathWorks,  Inc. 
1994-2013, 
http://www.mathworks.com/help/gads/examples/multiobjective 
genetic-algorithm-options.html.  

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 10/23/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use




